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Abstract—DCFA-MPI is an MPI library implementation for
Intel Xeon Phi co-processor clusters, where a compute node
consists of an Intel Xeon Phi co-processor card connected to the
host via PCI Express with InfiniBand. DCFA-MPI enables direct
data transfer between Intel Xeon Phi co-processors without
assistance from the host. Since DCFA, a direct communication
facility for many-core based accelerators, provides direct Infini-
Band communication functionality with the same interface as
that on the host processor for Xeon Phi co-processor user space
programs, direct InfiniBand communication between Xeon Phi
co-processors could easily be developed. Using DCFA, an MPI li-
brary able to perform direct inter-node communication between
Xeon Phi co-processors, has been designed and implemented.
The implementation is based on the Mellanox InfiniBand HCA
and the pre-production version of the Intel Xeon Phi co-
processor. DCFA-MPI delivers 3 times greater bandwidth than
the ’Intel MPI on Xeon Phi co-processors’ mode, and a from
2 to 12 times speed-up when compared to the ’Intel MPI on
Xeon where it offloads computation to Xeon Phi co-processors’
mode in communication with 2 MPI processes. It also shows
from 2 to 4 times speed-up over the ’Intel MPI on Xeon where
it offloads computation to Xeon Phi co-processors’ mode in a
five point stencil computation with an 8 processes * 56 threads
parallelization by MPI + OpenMP.

Keywords-MPI library; co-processor; Xeon phi; InfiniBand;
direct communication; accelerator

I. INTRODUCTION

Heterogeneous architecture clusters are currently in

widespread use. A total of 62 supercomputers in the Novem-

ber 2012 Top500 List [1] are using accelerator/Intel Xeon

Phi co-processor technology. There are two parallel execution

models possible for use in these types of clusters: the

host-assisted parallel execution model and the stand-alone

parallel execution model. In the host-assisted parallel execu-

tion model, the computation is offloaded to accelerators by

transferring computing data from host memory to accelerator

memory. Communication between compute nodes is handled

by the host CPU. In this execution model, data have to be

moved between the accelerator and the host, and between the

host and the remote host. These extra data movements result

in communication overhead. GPGPU-based clusters follow

this model because GPGPU cannot control communication

devices. In the stand-alone parallel execution model, not

only computation but also communication is executed in the

accelerators. If this execution model were implemented, low

overhead communication would be achieved. Although ac-

cording to the PCI Express standard, the accelerator, a device

in PCI Express, cannot configure devices and cannot receive

interrupts from devices, a many- core based accelerator such

as an Intel Xeon Phi co-processor can write commands to a

communication device if the PCI Express device address is

given by the host.

A direct communication facility for many-core based ac-

celerators, called DCFA, has been introduced in our previous

paper [2]. In DCFA, the host CPU configures and initializes

the InfiniBand HCA, then the co-processor is able to transfer

data directly to other co-processors using the HCA without

host assists. However, this implementation has the following

limitations: i) it was implemented only in co-processor kernel

space, so the kernel has to be rebooted every time a program

is executed; ii) the user has to write the host assist program,

and it must be executed before kernel booting; iii) the

components on the host and the co-processor haven’t yet

been defined clearly, so the host assist program has to be

rewritten for every new communication program.

This paper designs an MPI library for Intel Xeon Phi

co-processor clusters, called DCFA-MPI, to enable direct

communication between Xeon Phi co-processors. As the

basic communication library used by DCFA-MPI, DCFA

is improved to function as a user space communication

library providing the InfiniBand communication program-

ming interface on Xeon Phi co-processors, thus allowing

the communication programs to be executed multiple times

without kernel rebooting. In the internal implementation

of the functions requiring host assists, the corresponding

assisting requests are sent to the host, the host module of

DCFA, which implements the detailed assisting tasks, handles

these requests. Therefore, the host-assisting implementation

is hidden in DCFA, so users don’t need to write host assist

programs anymore. Moreover, since the interface of DCFA

is uniform with the original host’s InfiniBand Verbs library,

a user can easily execute the host communication program

on co-processors. Using the direct InfiniBand communication

functions provided by DCFA, a DCFA P2P communication

layer could be implemented in DCFA-MPI similar to the

layers defined on the host. The MPI applications running on

the host could be easily moved to co-processors, and benefit

from direct InfiniBand communication.

After introducing the background of this paper in the

following section, related work is introduced in Section III.

In Section IV, the design and implementation of DCFA-MPI

is presented. In Section V, the experimental environment, the

evaluation experiments, and the results are presented. Finally,

this paper will be concluded with a discussion of future work
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Figure 1. Xeon Phi co-processor Architectures

in Section VI.

II. BACKGROUND

The InfiniBand Architecture (IBA) [3] is an industry-

standard architecture intended to define a low latency, high

bandwidth System Area Network (SAN) for interconnecting

multiple independent computing nodes and I/O nodes. There

are two communication modes can be used in user-level

software: the Send/Receive mode, in which both the sender

and the receiver must explicitly post requests, and the RDMA

mode, in which only the sender side is required to post

requests, but the address information of the receive buffer

must be known by the sender side before data transfer. All the

memory locations containing data buffers must be registered

as a memory region before HCA can access them.

Figure 1 depicts the operating system kernel for the target

architecture. The Linux kernel runs on the host CPU while a

micro kernel runs on Xeon Phi co-processors. An Accelerator

Abstraction Layer (AAL) is designed to hide hardware-

specific functions and provide kernel programming interfaces.

The AAL resides on both host and Xeon Phi co-processors,

AAL(IKCL) is the inter-kernel communication layer between

the host and the Xeon Phi co-processors. The mcctrl module

is responsible for delegating system calls in the Xeon Phi co-

processor kernel. The mcexec command is the host command

used to load and execute executable file on a Xeon Phi co-

processor; it is also the delegation process in the host user

space.

DCFA-MPI is implemented based on a light-weight host

MPI implementation, called the Yet Another MPI Implemen-

tation (YAMPII) [4]. It was developed at the University of

Tokyo starting in December of 2001. It has been used as the

MPI core of GridMPI, developed by the NaReGI project in

Japan.

III. RELATED WORK

A. Intel SCIF

Intel published an Intel MIC Platform Software Stack

(MPSS), which consists of an embedded Linux, a minimally

modified GCC, and driver software [5] [6]. The Linux system

running on the Xeon Phi co-processor is designed to be

booted by a host processor, and is connected to the host

via a host driver. In this Linux environment, C, C++ and

Fortran programs can easily be executed as runs on the

host, and the OpenMPI and Intel MPI Library are also

provided for parallel programming. The MPSS contains a

direct Symmetric Communication Interface (SCIF) [7] [8],

which is designed to be used as the communication backbone

between the host processors and the Xeon Phi co-processors

in a heterogeneous computing environment. It provides a

uniform API for communication between the host processor

and the Xeon Phi co-processors, and also between Xeon Phi

co-processors. An SCIF driver consists of a user library and a

kernel driver on both the host and the Xeon Phi co-processor.

The SCIF driver provides the communication between the

host and the Xeon Phi co-processor; it can be called by

the user library directly, and can also support the InfiniBand

drivers, which provides inter-node communication. A pair of

HCA Proxy modules is defined for offloading some Infini-

Band internal implementation to the host IB Proxy Daemon

above the SCIF driver, and a user space InfiniBand Verbs

library is also defined on the Xeon Phi co-processor, therefore

inter-node InfiniBand communication between Xeon Phi co-

processors is available.

Compared with DCFA, SCIF is designed to provide the

communication API for communication between the host

processors and the Xeon Phi co-processors in a hetero-

geneous computing environment; not only can the kernel

modules use it to communicate with any other processors

or co-processors, but the user application can also use it

to transfer data. Although DCFA also contains components

to communicate between host processor and Xeon Phi co-

processor, they are only designed for offloading some Infini-

Band functions, so the implementation is light weight and is

designed only to be used in the kernel space. Moreover, both

the DCFA and SCIF are designed to offload some InfiniBand

internal implementations to the host. In DCFA, the mcexec

process is launched at the time the executable file is loaded

on the Xeon Phi co-processor, then it waits to handle the

offloaded requests, not only from the InfiniBand module, but

also from system calls. In SCIF, the host IB Proxy Daemon

is dedicated to handling InfiniBand requests.

B. Intel MPI Library for the Intel MIC Architecture

In the Intel MPI Library for the Intel MIC Architecture,

the node can be either a host processor or a Xeon Phi co-

processor, and the following three programming modes are

supported [9].

• ’Intel MPI on Xeon where it offloads computation to

Xeon Phi co-processors’ mode

MPI ranks are located only on host processors and

computing is offloaded to Xeon Phi co-processors, com-

munication is still performed between host processors.

• ’Intel MPI on Xeon Phi co-processors’ mode

MPI ranks are located only on Xeon Phi co-processors,

all messages are transferred to/from Xeon Phi co-

processors directly.

• ’Symmetric’ mode

MPI ranks are located on both host processors and Xeon

Phi co-processors, messages can be transferred to/from

any core.

’Intel MPI on Xeon where it offloads computation to Xeon

Phi co-processors’ mode has to move data to Xeon Phi co-

processors before computing, and move data out before host

communication, ’Intel MPI on Xeon Phi co-processors’ mode
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Figure 2. Data Transfer in DCFA

is similar to DCFA-MPI, in that both the computing and

communication are performed on Xeon Phi co-processors

directly. Both of them are compared with DCFA-MPI in

Section V.

C. Intra-MIC MPI Communication using MVAPICH2

An early paper [10] introduces an early experience of

intra-MIC communication using MVAPICH2. It enhances

and tunes a shared memory based design in MVAPICH2 on

the pre-production version of the Xeon Phi co-processors,

and evaluated both P2P communication and collective com-

munication. This implementation has not implemented inter-

node communication yet, and runs entirely on the Linux

environment provided by MPSS.

IV. DESIGN AND IMPLEMENTATION

A. DCFA

This paper introduces an MPI library for many-core based

clusters, called DCFA-MPI to enable direct data transfer

between Xeon Phi co-processors without the host assist. This

library is based on DCFA [2], a direct communication facility

for many-core based accelerators.

DCFA is intended to implement direct data transfer for

many-core architectures (Figure 2), especially the Intel MIC

architecture. Because a many-core unit is a device of the PCI

Express bus, according to the PCI Express specification, it

is not capable of configuring and initializing the InfiniBand

HCA. This means that the host has to assist memory transfer

between many-core units, and thus extra communication

overhead is incurred. In DCFA, the internal structures of the

InfiniBand HCA are distributed to both the memory space of

the host and that of the many-core unit. After the host CPU

configures and initializes the HCA, it obtains the addresses

of both the HCA and the internal structures assigned by the

host. Using the information given by the host and the internal

structures assigned in the many-core memory area, the many-

core unit may transfer data directly between other many-core

units using the HCA without host assists. The implementation

of DCFA is based on the Mellanox InfiniBand HCA and Intel

Knights Ferry. Evaluation results show that, for large data

transfer, the latency of DCFA delivers the same performance

as that of host to host data transfer.

B. DCFA-MPI

DCFA-MPI is an MPI library over the DCFA facility,

implementing direct P2P communication between Intel Xeon

Phi co-processors. Since DCFA has defined the same Infini-

Band communication programming interface on the Xeon Phi

co-processor user space as the one defined on the host, The

InfiniBand P2P communication layer could be implemented

on a Xeon Phi co-processor, MPI communication primitives

executed on the Xeon Phi co-processor may then transfer

data directly to other Xeon Phi co-processors by issuing

commands to the HCA (Figure 3).

1) Components in DCFA-MPI: DCFA-MPI defines the

DCFA as an architecture-specified P2P communication layer,

Figure 3 shows its components in some detail.

• DCFA IB IF

The DCFA InfiniBand Interface defines the same In-

finiBand functions as those defined in the InfiniBand

Verbs library. Since some functions, such as resource

initialization and memory region registration, have to

send requests into the host kernel, a command mecha-

nism is designed for offloading these requests to a host

delegation process and then to the host kernel. In the in-

ternal implementation of these functions, the parameters

are submitted to the Xeon Phi co-processor kernel by

calling the corresponding system call, thus the DCFA

CMD Client module is able to handle these requests

and transfer them to the host delegation process, and the

result of each request handled will then be returned. The

DCFA IB IF then creates its own InfiniBand structures

and saves the host results. For corresponding functions

for send / receive data, the internal implementation is

almost the same as the one defined in the host’s IB

Verbs, the post send/receive commands are issued to

HCA directly.

• DCFA CMD server / client

The DCFA CMD Client is carrying out the communica-

tion required for transferring the Xeon Phi co-processor

user space requests to the host side, and preparing

parameters for host offloading. For example, the virtual

address of a user buffer and its size are submitted to the

kernel for memory region registration, but the host del-

egation process needs the physical address for memory

mapping, thus the DCFA CMD Client transforms the

buffer’s virtual address to a physical address and sends

it to the host. On the host side, the DCFA CMD Server

is registered as an extension of the delegation process;

it receives requests and executes the corresponding host

InfiniBand functions, registers all the InfiniBand objects

created for Xeon Phi co-processor in a hash table, and

publishes a hash key for later reuse.

• DCFA-MPI P2P communication layer

This layer implements the P2P communication for upper

MPI layers. Since the DCFA IB IF provides all the

InfiniBand functions on Xeon Phi co-processor user

space, P2P communication using InfiniBand RDMA

operations could easily be implemented. The commu-

nication protocol is described in Section IV-B3

• DCFA-MPI CMD server / client

As with the DCFA CMD server / client modules, these

two components are responsible for offloading MPI

functions. Although MPI P2P communications and col-

lective communications are already implemented above

the DCFA-MPI P2P communication layer, some heavy

functions, such as communication using user defined

data types could be candidates for offloading to the host

CPU. The design and implementation of these offloading
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Figure 3. Implementation Components in DCFA-MPI

functions is planned in future work.

The DCFA (Host) IBV Extension, DCFA (Host) MLX4

Library Extension and DCFA (Host) Modified IB core com-

ponents are designed so the host InfiniBand driver can access

the Xeon Phi co-processor memory area [2].

2) The Process from MPI Library Installation to Applica-
tion Execution:

• Library Installation

DCFA-MPI’s installation process generates a static MPI

library and user commands such as mpicc and mpirun.

The static MPI library provides the MPI functions on the

Xeon Phi co-processor, and the user application will be

linked to this library in the compiling process using the

mpicc command.

• Micro Kernel booting

In the Xeon Phi co-processor kernel booting stage,

some initialization tasks are performed. The host drivers

for supporting the Xeon Phi co-processor system are

inserted at this time.

• mpicc

This command compiles the user source code to an

executable MPI application. The mpicc compiles the

user source code to an object file, which is then linked

with the Xeon Phi co-processor static MPI library.

• mpirun

As explained in Section II, the mcexec command exe-

cutes the object file on the Xeon Phi co-processor. The

mpirun command launches a process on each rank, and

each process executes the object file using the mcexec

command.

3) MPI Communication Protocol: MPI usually uses two

internal protocols, Eager and Rendezvous, to implement the

communication. In the Eager protocol, a message is sent to

the receiver side regardless of the receiver’s state. In the

Rendezvous protocol, a handshake happens before a message

is sent to the receiver side. The Eager protocol is usually

used for small messages, data is copied to a preregistered

global buffer, and then transferred to a global buffer on the

receiver side, and then the receiver copies it to its receive

buffer. For large data transfers, the overhead of extra data

copies is expensive, thus the Rendezvous protocol is used.

The handshake confirms the receive buffer on the receiver

side is prepared, and then the sender can send data to the

receive buffer directly.
A memory region registration operation on the Xeon Phi

co-processor is much more expensive than that on the host

because of the extra overhead of the offloading implementa-

tion which has been described in Section IV-B1. For reducing

this operation, a buffer cache pool was designed for caching

the most recently used memory regions. If the memory area

of the user buffer exists in this cache pool, the memory

region hit will be reused, otherwise a new memory region

will be registered. However, the cache pool can only benefit

applications which always reuse a few buffers. Since the data

copy operation on the Xeon Phi co-processor spends less

than 1 microsecond for 4Kbytes of data, DCFA-MPI uses a

one-copy design for small messages. For large messages, not

only the overhead of data copy but also the limited memory

size of Xeon Phi co-processor should be considered, thus the

zero-copy design was chosen.
InfiniBand provides two communication modes, the

Send/Receive mode and the RDMA mode. In the zero-copy

design for large messages, it’s impossible to improve the

performance of a sender first case using the Send/Receive

mode. This is because, even if the sender sends first, it

has to wait for the receiver to post a receive request with

the prepared user receive buffer, and then it posts a send

request with its user send buffer. Therefore, use of the RDMA

communication mode was considered.
RDMA communication mode contains the RDMA write

operation, which writes data from local scatter/gather el-

ements (SGEs) to a remote buffer, and the RDMA read

operation, which reads data from a remote buffer and writes

to local SGEs. Current MPI implementations use several

kinds of Rendezvous protocols using either RDMA write or

RDMA read, to hide communication latency by overlapping

computation with communication. DCFA-MPI uses another
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(a) Sender First Rendezvous Protocol (b) Receiver First Rendezvous Proto-
col

Figure 4. Communication Protocols in DCFA-MPI

rendezvous protocol designed by the paper [11]. This proto-

col uses both RDMA write and RDMA read. The following

four communication protocols are defined.

• Eager Protocol

The sender decides to use the Eager protocol for small

data transfers. It will copy the data to a global preregis-

tered buffer, and then RDMA write an EAGER packet,

which consists of an EAGER header SGE, the data SGE

and a tail SGE, to a global preregistered RDMA buffer

on the receiver side, and confirm its completion. Since

it’s ensured that the data payload of the receive buffer

uses the same order as the SGEs defined in the sender

request [3], the receiver will wait for the completion of

data transfer by checking the tail of a received packet

if the packet is EAGER type, then copy the data to the

user receive buffer.

• Sender First Rendezvous Protocol

The sender will send an RTS packet, including its

buffer address and the memory region information, to

the receiver, then wait for the receiver’s DONE packet.

When the receiver starts to receive, it must receive the

RTS packet, then it starts an RDMA read by using the

buffer information in the RTS packet. It will send a

DONE packet to the sender when the read operation

is finished (Figure 4(a)).

• Receiver First Rendezvous Protocol

The receiver will send an RTR packet including the

user receive buffer information, to the sender, then

wait the DONE packet. The sender receives the RTR

packet, and then it starts an RDMA write by using the

buffer information included in the RTR packet. After the

RDMA write is finished, the sender will send a DONE

packet to the receiver (Figure 4(b)).

• Simultaneous Send/Receive Rendezvous Protocol

In this situation, the sender will receive an RTR packet

after it has sent an RTS; the receiver will also receive

an RTS packet after it has sent an RTR. The sender

will disregard the RTR and still wait for the receiver’s

RDMA read. The receiver will RDMA read by using

the buffer data included in the RTS packet following the

process of the Sender First Rendezvous Protocol(above).

A sequence id is assigned to every MPI send / receive

request in order to make sure the send / receive order is

correct. The sequence id must be unique in each pair of MPI

processes, and any pair of send / receive requests must hold

the same sequence id. Therefore, every packet received from

another MPI process can be matched to the correct local

request. If an MPI ANY SOURCE receive request comes,

all the sequences for receive requests will be locked, thus any

later receive requests will also be locked because they cannot

get a sequence id. The MPI ANY SOURCE request will get

its sequence id when it first meets the matching packet from

a sender, then all the sequences locked will be unlocked and

later receive requests can also get their ids and continue their

receive process.
Since correct request order is ensured by the sequence ids,

the deadlock caused by Eager / Rendezvous mis-predictions

can easily be solved.

• The Sender Eager and Receiver Rendezvous Protocols

The sender sends an Eager packet and its data, then the

receiver recognizes this mis-prediction when it receives

this Eager packet. The sending data should be smaller

than the receiving data, and so the receiver will copy the

data and complete this request. In the receiver first case,

the sender drops the RTR packet sent from the receiver,

because, thanks to the sequence id, it’s sure that this

packet is only for the current send request but not for

later ones.

• The Sender Rendezvous and Receiver Eager Protocols

The sender sends an RTS packet and the receiver only

waits for the packet from the sender, then the receiver

recognizes this mis-prediction when it receives this RTS

packet. The sending data should be larger than the

receiving data so the receiver will issue an MPI error.

4) Offloading Design for Send Buffers: It was expected

that the communication performance of DCFA-MPI would

be similar to that of the host MPI library, because DCFA,

which transfers data between Xeon Phi co-processors via

InfiniBand, is able to deliver the same performance as that

of host to host data transfer. We evaluated DCFA again on

a newer experiment environment which uses the Intel Xeon

CPU E5-2670 and the pre-production version of the Xeon Phi

co-processor. This result is much different from the previous

one [2], which was obtained using the Intel Xeon CPU X5680

and the Intel Knights Ferry. Xeon Phi co-processor to Xeon

Phi co-processor InfiniBand data transfer is always slower

than host to host, by more than 4 times.
The following experiments were performed to find the

communication performance bottleneck of the current Xeon

Phi co-processor. i) InfiniBand RDMA write from the buffer
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Figure 5. InfiniBand communication with different data transfer directions

allocated in the host memory (host buffer) to the buffer

allocated in the remote Xeon Phi co-processor memory (Xeon

Phi co-processor buffer); ii) InfiniBand RDMA write from a

Xeon Phi co-processor buffer to a host buffer; iii) InfiniBand

RDMA write from a Xeon Phi co-processor buffer to a

remote Xeon Phi co-processor buffer ; iv) InfiniBand RDMA

write from a host buffer to a remote host buffer. All of the

experiments were conducted in Ping-Pong fashion, and the

bandwidth is compared in Figure 5. The data transfer from a

host buffer to a remote Xeon Phi co-processor buffer delivers

the same bandwidth as host to host runs, however, the data

transfer from a Xeon Phi co-processor buffer always gets

much worse results whenever it is written into host memory

or Xeon Phi co-processor memory. An InfiniBand RDMA

write process consists of a DMA read from the send buffer

to a local InfiniBand HCA, a data transfer from a local HCA

to a remote HCA, and a DMA write from a remote HCA

to a remote receive buffer, thus the performance bottleneck

should be the DMA read from the Xeon Phi co-processor

send buffer to the HCA.

For improving performance on the current experiment

environment, this paper designs an offloading send buffer

mode. Three functions are added to DCFA: reg offload mr,

sync offload mr, and dereg offload mr. Figure 6 describes

an example using these functions. The user application calls

reg offload mr to register an offloading memory region, the

corresponding host buffer is then allocated in the host delega-

tion process and registered as an InfiniBand memory region,

the information of this memory region is returned to the Xeon

Phi co-processor side and used for later communication.

Before starting the post send operation, data must be syn-

chronized into the corresponding host buffer using the DMA

engine, then the user application can issue a send request

from the host buffer using its virtual address and the key

of this memory region. Finally, function dereg offload mr

destroys the offloading memory region on the Xeon Phi co-

processor side, deregisters the memory region on the host

side, and frees the host buffer. Using these functions, DCFA-

MPI is easily able to register an offload memory region

for a send buffer, and synchronize the latest data from a

Xeon Phi co-processor to its host buffer before performing

an InfiniBand send operation, thus the latest data can be

transferred to a remote MPI process. This design benefits

Figure 6. Offloading send buffer

Figure 7. Evaluation of DCFA-MPI with offloading send buffer design
using non-blocking inter-node MPI communication

large message communication because of the overhead of

data synchronization. The message size at the beginning of

offloading should be tuned in a different server environment.

In our environment, an offloading send buffer starting from

8Kbytes shows the best performance. Figure 7 shows the RTT

of non-blocking inter-node communication using MPI Isend

and MPI Irecv. The offloading design improves the perfor-

mance of large messages and is getting closer and closer

to the host performance. It is only 2 times slower than the

host at 1Mbytes. Figure 8 also shows that the DCFA-MPI

with offloading send buffer design improves the inter-node

communication bandwidth to 2.8Gbytes/sec.

Table I
SERVER ARCHITECTURE USED IN THE EXPERIMENTS

CPU Intel Xeon CPU E5-2670 0 @ 2.60GHz x 16

InfiniBand HCA Mellanox Technologies MT27500 Family [ConnectX-3]

Card Pre-production of Intel Xeon Phi x 1

Operating System Red Hat Enterprise Linux Server 6.2

Intel MPSS 2.1.4982-15

Intel MPI Library 4.1.0.027

Intel C++ Compiler Composer XE 2013.0.079

InfiniBand driver OFED-1.5.4.1
for Intel MPI

InfiniBand driver MLNX OFED LINUX
for DCFA-MPI 1.5.3-3.1.0-rhel6.2-x86 64
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Figure 8. Evaluation of DCFA-MPI with offloading send buffer design
using MPI inter-node communication bandwidth

V. EVALUATION

We performed all experiments on an 8 node cluster with

the configuration given in Table I. The InfiniBand driver for

Intel MPI is different from the one used for DCFA-MPI,

because Intel MPSS with OFED only supports the OFED-

1.5.4.1 InfiniBand driver, but DCFA is implemented based

on the MLNX OFED LINUX 1.5.3-* driver. The DCFA-

MPI evaluation is based on a comparison with ’Intel MPI

on Xeon where it offloads computation to Xeon Phi co-

processors’ mode and ’Intel MPI on Xeon Phi co-processors’

mode. Three experiments were performed.

The first experiment compares the inter-node communica-

tion bandwidth of DCFA-MPI and ’Intel MPI on Xeon Phi

co-processors’ mode because both of them perform direct

MPI communication between Xeon Phi co-processors. The

bandwidth result is calculated using the round trip latency

of MPI blocking communication. ’Intel MPI on Xeon where

it offloads computation to Xeon Phi co-processors’ mode is

not included because its MPI communication is only between

hosts. Two MPI processes are launched on different nodes.

As shown in Figure 9, DCFA-MPI always outperforms ’Intel

MPI on Xeon Phi co-processors’ mode, and delivers a 3 times

speed-up after the 1Mbytes message size. For 4bytes round

trip blocking communication, the ’Intel MPI on Xeon Phi co-

processors’ mode spends 28 microseconds while the DCFA-

MPI only spends 15 microseconds. For large messages,

because of the bottleneck discussed in Section IV-B4, ’Intel

MPI on Xeon Phi co-processors’ mode cannot get bandwidth

greater than 1Gbytes/s, but DCFA-MPI benefits from the

offloading send buffer design, so bandwidth can grow up to

2.8Gbytes/s.

The second experiment uses a communication-only appli-

cation to compare DCFA-MPI and ’Intel MPI on Xeon where

it offloads computation to Xeon Phi co-processors’ mode.

Two MPI processes are launched on different nodes. Since

DCFA-MPI is running entirely on Xeon Phi co-processors,

the computing data always stays in Xeon Phi co-processor

memory, and only inter-node MPI communication is required.

However, ’Intel MPI on Xeon where it offloads computation

to Xeon Phi co-processors’ mode is running mainly on the

host and offloads computing to the Xeon Phi co-processors,

thus data have to be transferred into Xeon Phi co-processor

Figure 9. Inter-node communication bandwidth comparison between
DCFA-MPI and ’Intel MPI on Xeon Phi co-processors’ mode

Table II
COMMUNICATION DATA SIZE OF THE COMMUNICATION ONLY

APPLICATION

Data size X bytes

Offloading Data Copy In X bytes + Copy Out X bytes

MPI Communication Data Send X bytes + Receive X bytes

memory before computing, and transferred out after com-

puting is finished, then inter-node MPI communication is

performed on the host. Table II lists its communication

data size. Non-blocking communication using MPI Isend

and MPI Irecv is used for inter-node communication. As

shown in Figure 10, DCFA-MPI is 12 times faster than

’Intel MPI on Xeon where it offloads computation to Xeon

Phi co-processors’ mode when the data transferred is less

than 128bytes, because ’Intel MPI on Xeon where it offloads

computation to Xeon Phi co-processors’ mode has to spend

a fixed amount of time to initialize offloading and perform

data transfer between the host and the Xeon Phi co-processor,

even though this application has been optimized based on the

following policies:

• eliminate offload Initialization from the communication

loop;

• keep the buffer persistent and only transfer necessary

data;

• align the buffer on a 4Kbytes page boundary and make

sure data is a multiple of 4Kbytes to get fastest data

transfer over PCI express;

• overlap offloading data transfer and MPI communication

using the double buffer method;

With the increase of transferred data, the ’Intel MPI on Xeon

where it offloads computation to Xeon Phi co-processors’

mode is gradually getting closer to DCFA-MPI because

the offloading overhead is becoming smaller than the la-

tency of inter-node MPI communication, but DCFA-MPI

also maintains better performance than ’Intel MPI on Xeon

where it offloads computation to Xeon Phi co-processors’

mode, 2 times faster when the data transferred is larger than

512Kbytes.

The third experiment compares DCFA-MPI, ’Intel MPI

on Xeon where it offloads computation to Xeon Phi co-

processors’ mode and ’Intel MPI on Xeon Phi co-processors’

mode using a five point stencil computation, and parallelizes
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Figure 10. Comparison between DCFA-MPI and ’Intel MPI on Xeon
where it offloads computation to Xeon Phi co-processors’ mode using
communication only application

computing using both MPI and OpenMP [12]. Computing

data are separated into MPI processes on different nodes, and

then OpenMP threads parallelize local computing. Because

demand paging hasn’t been implemented on our Xeon Phi

co-processor kernel yet, the memory consumption of the

test application is strictly limited. Our experiment uses a

1282*1282 problem size, and table III describes the data size

used for computing and communication. Since the inter-node

data exchange only happens at adjacent boundaries, the MPI

communication data size is 10Kbytes, and the data required

to be transferred in / out at every offloading computing stage

is also 10Kbytes, because only this area is exchanged by

host MPI, all the other areas can persistently be kept on

the Xeon Phi co-processors. Figure 11 shows the average

processing time with 100 iterations. When the number of

MPI processes is 1, both the MPI communication data and

offloading data are 0bytes because MPI doesn’t exchange any

data. DCFA-MPI and ’Intel MPI on Xeon Phi co-processors’

mode deliver the same performance, but ’Intel MPI on Xeon

where it offloads computation to Xeon Phi co-processors’

mode still spends double the time compared with DCFA-

MPI and ’Intel MPI on Xeon Phi co-processors’ mode, this

is because of the fixed overhead of preparing computation

offloading. With the increase in the number of MPI processes,

the computing data size on every MPI process becomes

smaller, but the offloading data and MPI communication data

are not changed, thus the gap between DCFA-MPI and ’Intel

MPI on Xeon where it offloads computation to Xeon Phi co-

processors’ mode becomes larger. With the increase in the

number of OpenMP threads, the gap between DCFA-MPI and

’Intel MPI on Xeon where it offloads computation to Xeon

Phi co-processors’ mode becomes larger, because OpenMP

decreases the total computing time. DCFA-MPI delivers in

the worst case, a 2 times speed-up with 1 MPI process and

without OpenMP, and in the best case, a 4 times speed-up

with 8 MPI processes and 56 OpenMP threads. The results

of DCFA-MPI and ’Intel MPI on Xeon Phi co-processors’

mode do not show a big difference, because in both cases

the computing is on the Xeon Phi co-processors and the only

communication is the MPI communication between Xeon Phi

co-processors. Figure 12 compares their speed-up over the

serial program. In the cases using over 1 MPI process or

Table III
COMMUNICATION DATA SIZE OF THE FIVE POINT STENCIL COMPUTATION

APPLICATION

Problem Size (Number of Points) 1282 * 1282

Computing Data 12Mbytes

Offloading Data Copy In 10Kbytes + Copy Out 10Kbytes

MPI Communication Data Send 10Kbytes + Receive 10Kbytes

Figure 11. Processing time of five point stencil computation with different
number of MPI processes using DCFA-MPI, ’Intel MPI on Xeon where it
offloads computation to Xeon Phi co-processors’ mode (Intel MPI on Xeon
+ offload) and ’Intel MPI on Xeon Phi co-processors’ mode

over 4 OpenMP threads, ’Intel MPI on Xeon where it offloads

computation to Xeon Phi co-processors’ mode shows poorer

results than DCFA-MPI and ’Intel MPI on Xeon Phi co-

processors’ mode, because the time of offloading computing

data occupies a greater proportion when the computing data

is reduced by increasing MPI processes and the computing

time is reduced by increasing OpenMP threads. With 8 MPI

processes and 56 OpenMP threads, DCFA-MPI delivers a 117

times speed-up, ’Intel MPI on Xeon Phi co-processors’ mode

delivers a 113 times speed-up, and ’Intel MPI on Xeon where

it offloads computation to Xeon Phi co-processors’ mode only

delivers 74 times speed-up.

VI. CONCLUDING REMARKS

This paper has implemented an MPI library based on the

DCFA, called DCFA-MPI, to provide direct Xeon Phi co-

processor to Xeon Phi co-processor inter-node MPI commu-

nication. Since DCFA provides the same InfiniBand commu-

nication interface on the Xeon Phi co-processor user space,

the InfiniBand P2P communication layer of DCFA-MPI can

be implemented on a Xeon Phi co-processor. Therefore,

floating-point computing and P2P communication are to be

performed directly on the Xeon Phi co-processor.

However, in our current evaluation machines, the DMA

read from the Xeon Phi co-processor to the InfiniBand HCA

has limitations in bandwidth, and as a result, the InfiniBand

communication from the Xeon Phi co-processor is slower

than host to host communication, by more than 4 times.

This paper designs an offloading send buffer mode for

improving performance in such cases. The evaluation using

non-blocking MPI communication shows that the Xeon Phi

co-processor to Xeon Phi co-processor communication using
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Figure 12. Speed-up of five point stencil computation with different number
of OpenMP threads using DCFA-MPI, ’Intel MPI on Xeon where it offloads
computation to Xeon Phi co-processors’ mode (Intel MPI on Xeon + offload)
and ’Intel MPI on Xeon Phi co-processors’ mode when comparing to the
serial program

DCFA-MPI is only 2 times slower than host to host for large

messages.

The DCFA-MPI(MPI on Intel Xeon Phi co-processor) has

also been compared with the ’Intel MPI on Xeon where it

offloads computation to Xeon Phi co-processors’ mode and

’Intel MPI on Xeon Phi co-processors’ mode. It delivers 3

times greater bandwidth than ’Intel MPI on Xeon Phi co-

processors’ mode, and from 2 to 12 times speed-up when

compared to ’Intel MPI on Xeon where it offloads compu-

tation to Xeon Phi co-processors’ mode in communication

with 2 MPI processes. It also shows from 2 to 4 times speed-

up over ’Intel MPI on Xeon where it offloads computation

to Xeon Phi co-processors’ mode in a five point stencil

computation with an 8 processes * 56 threads parallelization

by MPI + OpenMP.

For future research, some heavy functions, such as collec-

tive communication and communication using user defined

data types are planned to be offloaded to the host CPU.

Because relative to multi-cores, the Xeon Phi co-processor,

an example of a many-core architecture, has small memory

caches per core and limited memory bandwidth per core, the

footprint in the cache during execution of both the application

and the communication library should be minimized.
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